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The topological properties of a set of nuclei undergoing a phase transformation were investigated. 
The nuclei were spread out in a plane according to a Poisson distribution. All centres started to 
grow at the same moment and with the same constant rate. They grew circularly and free of 
shrinking. The mean numbers per nucleus of grain boundaries, triple points and growth fronts 
were calculated as functions of the degree of transformation, F (0 ~< F~< 1). For these 
relationships we deduce plain and exact expressions. 

1. In t roduct ion  and aims 
1.1. Model 
The mathematical model used is a plane with Poisson- 
distributed points. The points represent the nuclei. All 
nuclei start to transform at the same moment. They 
grow circularly and with the same constant rate. They 
grow free of shrinking. The growth may be a solidifi- 
cation, crystallization, recrystallization or phase 
transformation. If two circular growth fronts impinge, 
a straight grain boundary is formed. The grain bound- 
ary bisects perpendicularly the line between both 
centres. Each grain boundary ends in two triple points 
as shown in Fig. 1 or Fig. 3. 

The triple points that are formed by the intersection 
of three curves are divided into static and dynamic 
triple points. The static triple points are immobile and 
are formed by the ends of three grain boundaries. The 
dynamic triple points are moving and are formed by 
the end of a grain boundary and the ends of two 
growth fronts. 

Fig. 1 shows a "Poisson-distributed growing two- 
dimensional Voronoi tessellation" which is also called 
the "growing two-dimensional cell model". The degree 
of growth, F (0 ~< F ~< 1), is F = 0.6. This means that 
60% of the plane is transformed and 40% of the plane 
is still in the initial state. For degree of growth we also 
use the terms fraction solidified, fraction crystallized, 
fraction recrystallized or degree of transformation. 

Fig. 1 shows two phases: the growing phase and the 
disappearing phase. The transformation begins with 
a large number of small "islands". With increasing 
F the islands combine into larger aggregates and their 
number decreases. Finally, at F = 1 only one gigantic 
island remains. On the other hand, there is a gigantic 
"sea" at the beginning, when F = 0, which is sub- 

divided into smaller seas during the transformation 
which are finally exhausted at F = 1. The "islands" are 
convex and the "seas" concave, always with the same 
radius, R, for a given F. 

Fig. 1 shows the nuclei as points; the grain bound- 
aries as straight lines that end in the triple points; the 
static triple points as the ends of three straight lines; 
the dynamic triple points as the end of one straight 
line and the ends of two arcs; and the growth fronts as 
circles and arcs, all with the same radius of growth, R. 
Fig. 1 shows further that the grain boundaries are 
divided into types 1,2 and 3: type 1 ends at two 
dynamic triple points, type 2 ends at one static and 
one dynamic triple point and type 3 ends at two static 
triple points. 

Furthermore, Fig. 1 shows that the grain bound- 
aries and the static triple points are embedded in the 
growing phase. The growth fronts and the dynamic 
triple points, however, lie at the phase boundaries. 

1.2. Experiment 
Fig. 2 shows the experimental realization of this 
model. It shows a microphotograph of a foil of poly- 
propylene 4 gm thick after the following heat-treat- 
ment: first the foil was melted, then it was temporarily 
cooled to form nuclei, and then it was again heated to 
the growth temperature, T. This temperature (T) lay 
below the melting temperature. Therefore, the foil was 
in an undercooled liquid state. Out of the nuclei ma- 
ture spherulites grow at T, but new nuclei are not 
formed. If two neighbouring spherulites touch, 
a straight grain boundary begins to form. 

The growing spherulitic microstructure is marked 
[1] in equal time intervals, shown by the circles and 
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Figure 1 400 nuclei shown as points that are Poisson-distributed. For these a two-dimensional Voronoi tessellation is shown at F = 0.6. The 
numbers of ten properties were counted: the grain boundaries of type ! (16I), type 2 (286), type 3 (127) and of the sum of all three types (574); 
the dynamic (608), static (180) and all triple points (788); the circles (9), arcs (608) and all growth fronts (617). These numbers were divided by 
400 in order to obtain the values of one nucleus 

the arcs in Fig. 2. Final ly ,  if the foil is perfectly p r imary  
crystal l ized,  a p h o t o g r a p h  such as that  shown in Fig. 2 
is ob ta ined  at  r o o m  tempera ture .  I t  conforms  to 
a "growing  two-d imens iona l  Vorono i  tessellat ion".  
The Poisson d i s t r ibu t ion  of  the nuclei canno t  be iden- 
tified from Fig. 2, since the number  of nuclei  is too 
small. However ,  we exper imenta l ly  manifested the 
Poisson  d i s t r ibu t ion  by  the use of 1778 nuclei [2]. 

1 .3 .  B a s i c  r e l a t i o n s h i p s  
Two basic  re la t ionships  used in this work,  the Poisson 
d i s t r ibu t ion  and the Avrami  re la t ionship ,  are briefly 
in t roduced .  W e  choose  in this pape r  the area  tha t  
conta ins  on average  one nucleus as the unit  area.  Since 
the nuclei are Po isson-d i s t r ibu ted ,  the relat ive num-  
ber, Pk, to find k nuclei in the area  x [3] is 

pk(x) = ( x k / k ! ) e x p ( -  x) (1) 

with k = 0 ,1 ,  2, . ' x > 0 ; a n d ~ * "  i.  . . . .  ~ = o P~  ( x )  = 

Since the  Po i s son-d i s t r ibu ted  nuclei s tar t  to  grow at  
the same m o m e n t  and  since they grow circularly,  the 
dependence  of F on R is given by an Avrami  re la t ion-  
ship [4]  

F(R)  = t - e x p ( -  rcR z) f o r R  >f 0 

and  0 ~< F <~ 1 (2) 

The cons tan t  g rowth  rate, v, is given by  v = R/t, where 
t is the t ime of growth,  Of course,  we can subst i tute  
R = vt. We choose  in this pape r  v = l, Then we ob ta in  
the values l isted in Table  I. 

Figure 2 Micrography of a foiI of polypropylene 4 gm thick show- 
ing the "model" at F = l. Circles and arcs show the growth fronts at 
four time-points. Three neighbouring nuclei form a static triple 
point. The distance of these three nuclei from the static triple point 
is the same. 
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0.8 
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0.26651 
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0.54006 
0.71575 
0.85611 
1.210 73 
1.482 80 
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1.5. Aims 
From both basic equations and by means of probabil- 
ity theory we deduce the normalized numbers in de- 
pendence on R and the normalized numbers in de- 
pendence on the degree of growth, F, of: grain bound- 
aries of types 1, 2 and 3, and the sum of all three types, 
called rtype 1, Ttype 2, Ttype 3 and Trot, j, respectively; dy- 
namic, static and all triple points, called Udy,, U~tatic 
and Utotal, respectively; and circles, arcs and all growth 
fronts, called Vcirc~os, Varcs and Vtotal, respectively. 

We note that if the foil has N finite nuclei at F, then 
we have on average N T t y p e l ( F ) , N T t y p e 2 ( F ) , . . .  , 

NV~otal(F ) numbers of grain boundaries of type 
1, 2 , . . . ,  and of all growth fronts, respectively. 

Three years ago we investigated the model along an 
(infinite) straight line, named the Rosiwal traverse 
[5, 6]. 

2. Normalized numbers of grain 
boundaries in dependence on R 

In the produced microstructure with a radius of 
growth R, we have well-defined mean values per nu- 
cleus (or per unit area) for the numbei  of grain bound- 
aries of types 1, 2 and 3, and of the sum of all types. 
These relationships are deduced from probability the- 
ory in the following. 

Figure 3 Between two nuclei A and B there is a distance of 2 Y. At 
a radius of growth R the spherulites form a grain boundary of type 
1 with length b. C and C' are two dynamic triple points. 

2.1. Normalized number of grain boundaries 
of type 1 in dependence on R 

A nucleus (A) is a fixed starting point of our considera- 
tion. A second nucleus (B) is encountered at a distance 
2 Y. Since the points are Poisson-distributed, the prob- 
ability of finding one point in the area element 
2rc(2Y)dY is given by 

[2~z(2 Y) d Y] 1 
p l ( Y ) d Y  = e x p [ -  2~(2Y)dY]  

The expansion in a power series and rupture after the 
first term gives 

p l ( Y ) d Y  = 4rc Y d Y  (3) 
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A grain boundary of type 1 forms the bisecting line 
between the two nuclei A and B. The end-points of the 
grain boundary are designated C and C'  in Fig. 3 
C and C'  are the points of intersection of the two 
circles with radius of growth R from the nuclei A and 
B. Of course, 0 ~< Y ,%< R, and at C and C'  lie dynamic 

triple points. The distance CC'  is denoted as b. It holds 
that 

b = 2(R 2 - -  y 2 ) 1 / 2  for 0 ~< Y ~< R 

b(Y,R)  exists if no nucleus lies in the m-shaped  
region of Fig. 4. (A nucleus within the oo-shaped 
region would reach b before a grain boundary of type 
1 could exist, but this conflicts with the assumption.) 
The area (S) of the 
puted as 

S(Y, R) = 

oo-shaped region is easily com- 

2gR 2 - 2R 2{arcsin(Y/R) 

- ( r / m [ 1  - (y /R)2]  '/2} (4) 

for 0 ~< Y ~< R. The probability of finding no nucleus 
in the area S is for Poisson-distributed nuclei 

po(S) = (S~ - S) = exp( - S) 

The probability, Ttype 1 (Y, R ) d Y ,  of finding at a dis- 
tance between 2Y and 2Y + d Y  from a given nucleus 

1.4. Norma l i za t i on  
The number of all grain boundaries (or other proper- 
ties) that are found in the transforming two-dimen- 
sional Voronoi tessellation of Poisson-distributed 
nuclei depends on the number of nuclei (N) and t, R 
or F. 

For example, take N = 105 and F = 0.6. Then we 
count all grain boundaries (or other properties). We 
did so three times because of the fluctuations and we 
obtained 143 125, 143 079 and 143 080. Normalized to 
one nucleus the numbers of all grain boundaries are 
1.431 25, 1.430 79 and 1.430 80. The fluctuating values 
become more similar as N increases. Finally, at 
N ~ oo we have one exact value. This is the mean 
normalized number of all grain boundaries for 
N --* oo and F = 0.6. It amounts to 1.433 4 8 . . .  and in 
this paper is called the "normalized number" for short. 

We note that the result of the theory of probability 
also gives this "normalized number." 

Figure 4 The same state as in Fig. 3. The oo -shaped region must 
not contain any nucleus except A and B on the border. 



A a second nucleus B, and of finding simultaneously 
a grain boundary of type 1, is found by multiplication 
because of the independence of the events. The prob- 
ability is 

Ttype 1 (~ 17, R)dY = p~(Y, R)dYpo(S) 

= 4r~Yexp( - S)dY (5) 

Integrating from Y = 0 to R, Ttype I(R) is obtained 

Ttyp~(R) = 4rcYexp[ - S(Y,R)]dY (6) 
Y=0 

Ttyp~ ~(R) is the normalized number of grain bound- 
aries of type 1 in dependence on R. Ttyp~ ~(R) is cal- 
culated from Equations 4 and 6 by numerical integra- 
tion. The result is shown graphically in Fig. 5. 

2.2. Normalized number of grain boundaries 
of type 2 in dependence on R 

The grain boundary of type 2a is limited to the left side 
of the nucleus A by a dynamic triple point and to the 
right side of the nucleus A by a static triple point. At 
the grain boundary of type 2b this is reversed. It holds 
that 

T~ype2(R) = Tlype2a(R) --~ Ttype2b(R) 

= 2Ttype 2a(R) (7) 

At first we regard type 2a and we start with the 
-shaped region. The point C has to be a dynamic 

triple point, and therefore we have to find no nucleus 
in its circle with the radius of growth R. This probabil- 

2 

[d) 

1 2 
R 

Figure 5 Graph of the normalized numbers of grain boundaries of 
types 1, 2 and 3, and the sum of all three types in dependence on R: 
(a) Ttyp~ 1, (b) Ttyp~ 2, (c) T~ypc 3 and (d) T~ot~l. 

ity is given by 

4=YdYexp( - 7tR 2) 

Fig. 6 shows the area Srest, which is S minus g R  2. 

Within Sro~t(Y, R) there must be at least one nucleus in 
order to have a static triple point; otherwise this grain 
boundary is of type 1, and this may not be. The 
probability of finding no nucleus within the area 
Sre~t is exp ( - Srest ), Therefore, the probability of find- 
ing any number of nuclei other than zero within area 
S,e~t is 1 -  e x p ( -  S,~st): Collectively we have to 
multiply the independent probabilities 

Ttype2a(Y,R) d Y  = 4~Yexp( - "rcR 2) 

{1 - exp[  - Sr~t(Y,R)]}dY (8) 

Integrating from Y = 0 to Y = R, 

Ttyp~2a(R) = 4~Yexp( - rcR2)dy 
=0  

f; - 4r~ Yexp ( - rcR 2) 
=0  

x e x p [  - Srest(Y,R)]dY (9) 

Since the areas 

rtR ~ + S , . , (Y ,  R) : S(Y, R) 

upon integration Equation 9 gives 

Ttyp. 2.(R) = 27tR2exp( - TtR 2) 

- 4~Yexp[  - S(Y,R)]dY (10) 
=0 

The integral equals Ttype I(R)  from Equation 6. From 
Equation 7 it holds from Equation 10 that 

T t y p e 2 ( R  ) = 4 r c R 2 e x p (  - 7~R 2) - 2Ttyp ,  l ( R ) ( l l )  

Ttype 2 ( R )  is the mean number of grain boundaries of 
type 2 per nucleus. Ttype 2 ( R )  is shown graphically in 
Fig. 5. 

2.3. Normalized number of grain boundaries 
of type 3 in dependence on R 

The grain boundaries of type 3 end between C and C' 
in Fig. 3, without reaching C and C'. D in Fig. 7 is the 

Figure 6 S~rc~o is a circular area a r o u n d  C with radius of g rowth  R. 
It holds  f rom Fig. 4 tha t  Srcst = S Sclrde. Wi th in  the region 
Sre~, there is at least one nucleus  if the cons t ruc t ion  is valid for 
a grain bounda ry  of type 2a. 
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Figure 7 Construction of the areas used for the calculation of grain 
boundaries of type 3. All four circles or arcs hit the nuclei A and B. 
The neighbouring nucleus on the right-hand side is arranged in the 
differential area element dS within Sr~t. 

right end-point of the grain boundary, if the circle 
around D which goes through A and B has the circle 
area of SM. The probability of finding no nucleus 
within SM is exp ( -- SM). D is also the right end-point if 
within the area element dS on the right-hand side of 
the circle SM there is not less than one nucleus. The 
probability is [1 - e x p ( -  dS)]. This equals dS be- 
cause of the expansion in a power series and rupture 
after the second term. 

The left end of the grain boundary lies between 
C and D. The probability of finding not less than one 
nucleus within the region Sj in Fig. 7 amounts to 
[1 - exp( - $1)]. The three independent probabilities 
have to be multiplied 

exp( - SM)[I -- exp( -- Si)]dS (12) 

D can occupy any position from C to C'. This means 
that the area element dS has to be integrated over Srest 

T~ypo3(R) = f_ exp( -- SM)[1 -- exp( -- S~]dS 
r e s t  

(13) 

The result of the numerical integration is shown 
graphically in Fig. 5. 

As shown in Fig. 5, ~type 3( R ---roO ) = 3. This beha- 
viour means that an average of three grain boundaries 
belong to one nucleus. The following interpretation is 
possible: each polygon around one nucleus has six 
sides an average [7]. This is understandable since each 
grain boundary has two nuclei, A and B. 

2.4. Normalized number of all grain 
boundaries in dependence on R 

The normalized number of all grain boundaries in 
dependence on R, TtouffR), is 

Ttoul(R) = Ttypel(R) -[- Ttype2(R) Jr- Ttype3(R) 

(14) 

Insert ing Ttypel(R ) from Equation 16 (below) and 
Ttype 3(R) from Equation 18 (below) into Equation 14 

Ttotal(R ) =- { E U d y n ( R ) -  Ttype2(R)'] 4- Ttype2(R ) 

+ �89 -- Ttype2(R)] 
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The Ttype 2(R) cancels out and we obtain from Equa- 
tions 17 and 19 (below) that 

Ttotaj(R) = 2r~R2exp( - -  rcR 2) 

+ 311 - exp( - xR2)] 

- 3xR2exp( - IcR 2) 

= 3[1 - exp( - g R 2 ) 3  

- -  7~R 2 exp( - ~R 2) (15) 

Ttoul(R) is a Veuuch analytical expression and it is 
shown graphically in Fig. 5. 

3. Normal ized numbers of tr iple 
points in dependence on R 

In previous work we found the mean numbers by 
numerical integration. Here we find the numbers of 
triple points by exact integration [8]. 

3.1. Normalized number of dynamic triple 
points in dependence on R 

The normalized number of dynamic triple points in 
dependence on R equals 2 for grain boundaries of type 
1 and equals 1 for grain boundaries of type 2. There- 
fore, the normalized number, Udyn(R), of dynamic 
triple points in dependence on R is 

gdyn(R) = 2Ttypel(R) + Ttype2(R) (16) 

With Equation 11 there is an exact analytical expres- 
sion for Udyn(R) 

gdyn(R ) = 4rcR2exp( - ltR 2) for R > 0 

(17) 

Udyn(R) is shown graphically in Fig. 8. It holds that 

Udyn(R ) dR = 4rcR 2 
=0 R=O 

exp( - ~R2)dR = 1 

3.2. Normalized number of static triple 
points in dependence on R 

Each static triple point contains three ends of grain 
boundaries. Therefore, we have to divide the number 
of grain boundaries involved by 3. The grain bound- 
aries involved are of the types 2 and 3. The grain 
boundaries of type 2 have one and those of type 3 have 
two static triple points. Therefore, the normalized 
number of static triple points in dependence on R is 

gstatic(R) 1 = 3ETtype 2(R) 4- 2~ype 3(R)] (18) 

Ustatic(R ) is shown graphically in Fig. 8. Fig. 8 shows 
that Ustatic(R ~ oo ) = 2. This result says that in the 
completely transformed state there are two static 
triple points for each nucleus. 

Another deduction given in the Appendix yields an 
exact analytical result for Ustatic(R) 

Ustatic(R ) = 211 - exp( - / tR  2) - rcR 2 

exp( - r~R2)3 (19) 

Of course, Equations 18 and 19 are identical. 
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Figure 8 Graph of the normalized numbers of dynamic, static and 
all triple points in dependence on R: (a) Uay~, (b) U~tatio and (c) Utot. I. 

3.3. Normalized number of all triple points in 
dependence on R 

The mean values for the sum of all triple points is 
given by Utotal(R ) 

Utotal(R ) = Udyn(R) Jr- Ustatic(R ) (20) 

= 4r~R2exp( - 1rR:) 

+ 211 - exp( - g R  2) 

- rcR2exp( - rcR2)] 

=211  - exp( - ~R 2) 

+ r~R2exp( - rtR2)] (21) 

Utotal(R) is shown in Fig. 8. 

4. Normal i zed  n u m b e r  of  g r o w t h  
f ronts  in dependence  on R 

The growth fronts are either circles or arcs all with the 
same radius. We find again the normalized numbers of 
growth fronts in dependence on R by an exact 
deduction. 

4.1. Normalized number of circles 
in dependence on R 

First we deduce the normalized number of circles in 
dependence on R. The circles with radius R must not 
interfere with another nucleus. Therefore, a circle with 
the area rc(2R) a must be free of nuclei. This gives for 
Poisson-distributed nuclei the relative number 

[ g ( 2 R ) 2 ]  ~ 
Vcirol~(R) - exp [ - rc(2R) z] 

0~ 

= exp( - 4~R z) (22) 

Vci~d~(R) is shown graphically in Fig. 9. 

2~ (b) 

(0) 

0 ~  
0 1 2 

R 

Figure 9 Graph of the normalized numbers of circles, arcs and all 
growth fronts in dependence on R: (a) Vcirol0s, (b) Varcs and (c) V~o~.l. 

4.2. Normalized number of arcs 
in dependence on R 

The number of arcs equals the number of dynamic 
triple points. This result is unexpected. It is under- 
standable if each dynamic triple point is identified by 
an arc that is placed to the right of the dynamic triple 
point. It holds that 

Varcs(R) = gdyn(R) (23) 

Vat,s(R) is shown in Fig. 9. 

4.3. Normalized number of all g rowth 
fronts in dependence on R 

Since the growth fronts contain circles and arcs, the 
normalized number of growth fronts in dependence on 
R, ~otal(R), is by addition 

Vtotal(R ) = Vcirc]es(R ) 4- Uarcs(R ) (24) 

Vtot.l(R ) = exp( -- 4gR 2) + 4~Raexp(  - nR a) 

(25) 

Vtot,l(R) is shown graphically in Fig. 9. 

5. Normal i zed  numbers  of  all ten 
propert ies  in dependence  on F 

So far we have used R in order to calculate the nor- 
malized numbers of the ten properties. Now we use 
F in order to calculate the normalized numbers of the 
ten properties. The transformation, F(R), is given by 
Equation 2. 
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Figure 10 Graphical demonstration of the normalized numbers of 
grain boundaries of types 1, 2 and 3. and the sum of all three types in 
dependence on F: (a) Ttype 1, (b) Ttype 2, (C) ~type 3 and (4) Ttotal. 

5.1. Normalized numbers of grain boundaries 
of types 1, 2 and 3 in dependence on F 

Numerical  integration yields rtype 1 (R) from Equat ion 
6, Ttype2(R) from Equat ion 11 and rtype3(e ) from 
Equat ion 13. By means of the t ransformation F(R) we 
obtain Ttype I ( F ) ,  rtype 2 ( F )  and T, ype 3(F). These are 
shown graphically in Fig. 10. The error of the numer- 
ical integration is < 3%0 and it is within the range of 
the thickness of the lines. 

5.2. Normalized numbers of the seven 
remaining properties in dependence on F 

The transformation of Equat ion 2, F(R), yields 

exp( - rcR 2) = 1 - F 

~R 2 = - ln(1 - F) 

We multiply the two left-hand sides and then the two 
right-hand sides, obtaining 

~zR2exp - ~R 2) = - (1 - F) ln(1 - F)  

= g(F) (26) 

The expression g(F) frequently appears and is shown 
in Fig. 11. 

N o w  we consider the normalized numbers  of 
Ttotal(R) (Equation 15), gdyn(R ) (Equation 17), 
U~tatic(R) (Equation 19), Utotal(R ) (Equation 21), 
Vcirc~es(R) (Equation 22), Varos(R) (Equation 23) and 
Vtotal(R ) (Equation 25). All of these normalized num- 
bers in dependence on R are exact analytical expres- 
sions. We transform these normalized numbers, which 
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Figure 11 Graph of (a) g(F) and (b) (1 - F) 4 for 0 ~< F ~< 1. 

I 

(c) 

(a) 

0 ~ 1 
0,0 0.5 1.o 

F 

Figure 12 Graph of the normalized numbers of dynamic, static and 
all triple points in dependence on F: (a) Udy~ (b) U~t,,ic and (c) Utota I . 

are functions of R, by Equat ion 2 and obtain the 
normalized numbers  as functions of F. With g(F) from 
Equat ion 26 we finally obtain the plain expressions 

Ttota,(F) = 3F  - g(F) (27) 

Udyn( f  ) = + 4 g ( F )  (28) 

Ustatic(F ) ~--- 2 I F  -- g(F)] (29) 

Utota,(r ) = 2 I F  + g(F)]  (30) 

Vcircles(F ) ---~ (1 -- F)  4 (31) 

Varcs(F ) = -t- 4 g ( F )  (32) 

Vtot.l(f ) = (1 -- F )  4 + 4 g ( f )  (33) 

T(F), U(F) and V(F) are shown in Figs 10, 12 and 13, 
respectively. 



5.3.  E x a m p l e  
Given: 105 Poisson-distr ibuted nuclei having arrived 
at a degree of growth F = 0.6. 
Wanted: The mean numbers  of the ten properties. 

In a good  approximat ion  we obtain the mean num- 
bers of the: 

grain boundaries of type 1 

105~typel(F = 0.6) = 37999 

grain boundaries of type 2 

1 0 5 ~ y p e 2 ( F  = 0.6) = 7 1 1 1 9  

grain boundaries of type 3 

1 0 5 ~ t y p e 3 ( r  = 0.6) = 34592 

2~ 

b) (o 

0 ~  
0.0 0,5 1.0 

F 

Figure 13 Graph of the normalized numbers of circles, arcs and all 
growth fronts in dependence on F: (a) Vcircl~, (b) V,~c~ and (c) V,o,al. 

Exact mean numbers  are obtained for: 

all grain boundaries 10STtot~l(F = 0.6) = 143 348 
dynamic triple points 10sUdyn(F = 0.6) = 146607 
static triple points 105Ust~tic(F = 0.6) = 46697 
all triple points 10SUtotal(F = 0.6) = 193 303 
circles 10SV~irel~(F = 0.6) = 2560 
arcs 10SVaros(F = 0.6) = 146607 
all growth fronts 10SVtotaffF = 0.6) = 149 167 

6. Computer  s imulat ion 
Again we chose l0 s nuclei and F = 0.6. We counted 
the numbers  of all ten properties in a computer  simu- 
lation. The computer  simulation was repeated three 
times in order to even out fluctuations. In the first 
column of Table II  the properties are listed. In the 
second column the values of the example in Sec- 
tion 5.3 are listed. In the remaining three columns the 
numbers of the properties were counted by computer  
simulation. 

F rom Table II it can be seen that within the range of 
fluctuations the theoretical values are in good agree- 
ment with the simulation results. 

Appendix: Deduction for static 
triple points 
Three neighbouring growing spherulites meet in one 
point. This point is the static triple point. The distance 
to each of the nuclei of the three spherulites is the 
same, and we denote this distance by r. 

The relative number  to find three Poisson-distrib- 
uted nuclei in a distance between r and r + e, de- 
scribed by the probabil i ty q3 (AS), and simultaneously 
to find no nucleus within the circle with radius r, 
described by qo(S), amounts  to 

q(S, AS) = q3(AS)qo(S) (A1) 

It holds that S = rrr z and AS = 2r~rs, where ~ is infi- 
nitesimally small. Therefore according to the Poisson 
distribution q(S, AS) becomes 

(2rcrr 3 , 
q(r, e) - 3.v exp/  - 2rcra)exp( - "II;r 2) 

T A B L E  II N = 10 5 and F ~ 0.6 

Property Theory Counted out by computer simulation 

1 2 3 

Grain boundaries of type 1 37 999 37 948 37 683 38 127 
Grain boundaries of type 2 7l 119 70 713 70 925 70 794 
Grain boundaries of type 3 34592 34464 34471 34 159 
Grain boundaries of all types 143 348 143 125 143 079 143 080 
Dynamic triple points 146 607 146 610 146 292 147 052 
Static triple points 46 697 46 553 46 623 46 376 
All triple points 193 303 193 163 192 920 193 428 
Circles 2560 2581 2620 2531 
Arcs 146 607 146 610 146 292 147 052 
All growth fronts 149 167 149 191 148 912 149 583 
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Because of the infinitesimal size of a, 
exp ( - 2r~ra) .,~ 1, and therefore 

(2r~a)3 r 3 exp ( - 7rr 2) (A2) 
q(r, a) - 3 ! 

In order to eliminate the infinitesimal ~ we normalize 

the q(r, ~) 

co (2g~)3 r 3 exp ( - rcr 2) dr 
= o q ( r ' a ) d r  = 3! =o 

(2rr 3 1 

3! 2re 2 

This yields 

frco p(r) = q(r,a)/ q(r,a)dr = 2 ~ 2 r 3 e x p ( -  r~r 2) 
=0 

(A3) 

Of  course it holds that yr~=o p(r)dr = 1. 

We must  integrate p(r) from r = 0 to r = R in order 
to include all static triple points 

;/ P(R) = p(r) dr 
=0 

f 
R 

= /l;r 2 exp ( -- ~r 2) 2rcr dr (A4) 
r = O  

The substitution X = K r  2, which yields dX  = 2r~r dr, 
gives as a result 

I 
~R 2 

P(R) = X e x p (  - X ) d X  = - (1 + X) 
JX=O 

[~rR 2 

e x p ( -  X) x=o = 1 - (1 + ~ R Z ) e x p ( -  rcR z) 

(A5) 

Because of the normalizat ion P(R) is not  the nor- 
malized number  of static triple points in dependence 
on R. We saw in Section 3.2 that  in the transformed 
microstructure there are two static triple points for 
one nucleus. Therefore, Equat ion A5 yields 

Ust.t~(R) = 2P(R) = 211 -- (1 + rcR 2) 

x exp( - ~rR2)] (19) 
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