JOURNAL OF MATERIALS SCIENCE 28 (1993) 2706—2714

The normalized numbers of grain boundaries,
triple points and growth fronts in a circular
growing two-dimensional Voronoi tessellation
with Poisson-distributed nuclei
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The topological properties of a set of nuclei undergoing a phase transformation were investigated.
The nuclei were spread out in a plane according to a Poisson distribution. All centres started to
grow at the same moment and with the same constant rate. They grew circularly and free of

shrinking. The mean numbers per nucleus of grain boundaries, triple points and growth fronts

were calculated as functions of the degree of transformation, F (0 < F< 1). For these
relationships we deduce plain and exact expressions.

1. Introduction and aims

1.1. Model

The mathematical model used is a plane with Poisson-
distributed points. The points represent the nuclei. All
nuclei start to transform at the same moment. They
grow circularly and with the same constant rate. They
grow free of shrinking. The growth may be a solidifi-
cation, crystallization, recrystallization or phase
transformation. If two circular growth fronts impinge,
a straight grain boundary is formed. The grain bound-
ary bisects perpendicularly the line between both
centres. Fach grain boundary ends in two triple points
as shown in Fig. 1 or Fig. 3.

The triple points that are formed by the intersection
of three curves are divided into static and dynamic
triple points. The static triple points are immobile and
are formed by the ends of three grain boundaries. The
dynamic triple points are moving and are formed by
the end of a grain boundary and the ends of two
growth fronts.

Fig. 1 shows a “Poisson-distributed growing two-
dimensional Voronoi tessellation” which is also called
the “growing two-dimensional cell model”. The degree
of growth, F (0 < F < 1), is F = 0.6. This means that
60% of the plane is transformed and 40% of the plane
is still in the initial state. For degree of growth we also
use the terms fraction solidified, fraction crystallized,
fraction recrystallized or degree of transformation.

Fig. 1 shows two phases: the growing phase and the
disappearing phase. The transformation begins with
a large number of small “islands”. With increasing
F the islands combine into larger aggregates and their
number decreases. Finally, at F = 1 only one gigantic
island remains. On the other hand, there is a gigantic
“sea” at the beginning, when F =0, which is sub-
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divided into smaller seas during the transformation
which are finally exhausted at F = 1. The “islands” are
convex and the “seas” concave, always with the same
radius, R, for a given F.

Fig. 1 shows the nuclei as points; the grain bound-
aries as straight lines that end in the triple points; the
static triple points as the ends of three straight lines;
the dynamic triple points as the end of one straight
line and the ends of two arcs; and the growth fronts as
circles and arcs, all with the same radius of growth, R.
Fig. 1 shows further that the grain boundaries are
divided into types 1,2 and 3: type 1 ends at two
dynamic triple points, type 2 ends at one static and
one dynamic triple point and type 3 ends at two static
triple points.

Furthermore, Fig. 1 shows that the grain bound-
aries and the static triple points are embedded in the
growing phase. The growth fronts and the dynamic
triple points, however, lie at the phase boundaries.

1.2. Experiment
Fig. 2 shows the ecxperimental realization of this
model. It shows a microphotograph of a foil of poly-
propylene 4 pm thick after the following heat-treat-
ment: first the foil was melted, then it was temporarily
cooled to form nuclei, and then it was again heated to
the growth temperature, 7. This temperature (7') lay
below the melting temperature. Therefore, the foil was
in an undercooled liquid state. Out of the nuclei ma-
ture spherulites grow at 7, but new nuclei are not
formed. If two neighbouring spherulites touch,
a straight grain boundary begins to form.

The growing spherulitic microstructure is marked
[1] in equal time intervals, shown by the circles and
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Figure 1 400 nuclei shown as points that are Poisson-distributed. For these a two-dimensional Voronoi tessellation is shown at F = 0.6. The
numbers of ten propertics were counted: the grain boundaries of type 1 (161), type 2 (286), type 3 (127) and of the sum of all three types (574);
the dynamic {608}, static (180} and all triple points {788); the circles (9), ares (608} and all growth fronts (617). These numbers were divided by

400 in order to obtain the values of one nucleus.

the arcs in Fig. 2. Finally, if the foil is perfectly primary
crystallized, a photograph such as that shown in Fig. 2
is obtained at room temperature. It conforms to
a “growing two-dimensional Voronoi tessellation”.
The Poisson distribution of the nuclei cannot be iden-
tified from Fig. 2, since the number of nuclei is too
small. However, we experimentally manifested the
Poisson distribution by the use of 1778 nuclei [2].

1.3. Basic relationships

Two basic relationships used in this work, the Poisson
distribution and the Avrami relationship, are briefly
introduced. 'We choose in this paper the area that
contains on average one nucleus as the unit area. Since
the nuclei are Poisson-distributed, the relative num-
ber, pi, to find k nuclei in the area x [3] is

plx) = (x*/kl)exp(~ x) (1)
withk=0,1,2,...;x>0and ) /L p{x) =L

Since the Poisson-distributed nuclei start to grow at

the same moment and since they grow circularly, the

dependence of F on R is given by an Avrami relation-

ship {4]

F(RYy = | —exp(—=nR*) forR>=0

and 0 < F <1 @

The constant growth rate, v, is given by v = R/t, where
t is the time of growth., Of course, we can substitute
R = vt. We choose in this paper v = 1. Then we obtain
the values listed in Table L

B fy, e
Figure 2 Micrography of a foil of polypropylene 4 um thick show-
ing the “model” at F = 1. Circles and arcs show the growth fronts at
four time-points, Three neighbouring nuclei form a static triple
point. The distance of these three nuclei from the static triple point
is the same.

TABLE !

F R

0 0

0.2 0.26651
04 040324
3.6 0.54006
0.3 0.71575
0.9 0.85611
0.99 1.21073
0.999 1.48280
1 0
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1.4. Normalization

The number of all grain boundaries (or other proper-
ties) that are found in the transforming two-dimen-
sional Voronoi tessellation of Poisson-distributed
nuclei depends on the number of nuclei (N) and ¢, R
or F.

For example, take N = 105 and F = 0.6. Then we
count all grain boundaries (or other properties). We
did so three times because of the fluctuations and we
obtained 143 125, 143079 and 143 080. Normalized to
one nucleus the numbers of all grain boundaries are
1.43125, 1.43079 and 1.43080. The fluctuating values
become more similar as N increases. Finally, at
N — o0 we have one exact value. This is the mean
normalized number of all grain boundaries for
N — oo and F = 0.6. It amounts to 1.43348. . .and in
this paper is called the “normalized number” for short.

We note that the result of the theory of probability
also gives this “normalized number.”

1.5. Aims

From both basic equations and by means of probabil-
ity theory we deduce the normalized numbers in de-
pendence on R and the normalized numbers in de-
pendence on the degree of growth, F, of: grain bound-
aries of types 1, 2 and 3, and the sum of all three types,
called Tiype 15 Tiype 20 Tiype 3 a0d Tigyy, respectively; dy-
namic, static and all triple points, called Uy, Ugasic
and U, respectively; and circles, arcs and all growth
fronts, called Vi irciess Vares and Vigar, respectively.

We note that if the foil has N finite nuclei at F, then
we have on average NType1(F), NType2(F), ...,
NVm(F) numbers of grain boundaries of type
1,2,...,and of all growth fronts, respectively.

Three years ago we investigated the model along an
(infinite) straight line, named the Rosiwal traverse

(5, 6].

2. Normalized numbers of grain
boundaries in dependence on R

In the produced microstructure with a radius of
growth R, we have well-defined mean values per nu-
cleus (or per unit area) for the number of grain bound-
aries of types 1, 2 and 3, and of the sum of all types.
These relationships are deduced from probability the-
ory in the following.

2.1. Normalized number of grain boundaries
of type 1 in dependence on R

A nucleus (A) is a fixed starting point of our considera-

tion. A second nucleus (B) is encountered at a distance

2Y. Since the points are Poisson-distributed, the prob-

ability of finding one point in the area element

2n(2Y)dY is given by

[2n2Y)dY ]t

pi(Y)dY = .

exp[ — 2n(2Y)dY]

The expansion in a power series and rupture after the
first term gives

p1(Y)dY = 4nYdY 3
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A grain boundary of type 1 forms the bisecting line
between the two nuclei A and B. The end-points of the
grain boundary are designated C and C’ in Fig. 3
C and C’ are the points of intersection of the two
circles with radius of growth R from the nuclei A and
B. Of course, 0 < Y < R, and at C and C’ lie dynamic
triple points. The distance CC' is denoted as b. It holds
that

b = 2(R* — Y*H)Y? for0 < Y <R

b(Y, R) exists if no nucleus lies in the oo -shaped
region of Fig. 4. (A nucleus within the oo -shaped
region would reach b before a grain boundary of type
1 could exist, but this conflicts with the assumption.)
The area (S) of the oo -shaped region is easily com-
puted as

S(Y,R) = 2mR> — 2R*{arcsin(Y/R)
— (Y/R)[1 — (Y/RY]'?} (4

for 0 < Y < R. The probability of finding no nucleus
in the area S is for Poisson-distributed nuclei

pPo(S) = (S°/0lexp( — S) = exp( — )

The probability, T;,,.; (Y, R)dY, of finding at a dis-
tance between 2Y and 2Y + dY from a given nucleus

Figure 3 Between two nuclei A and B there is a distance of 2Y. At
a radius of growth R the spherulites form a grain boundary of type
1 with length b. C and C’ are two dynamic triple points.

Figure 4 The same state as in Fig. 3. The oc -shaped region must
not contain any nucleus except A and B on the border.



A a second nucleus B, and of finding simultaneously
a grain boundary of type 1, is found by multiplication
because of the independence of the events. The prob-
ability is

T;ype 1 (Ya R)dY

p(Y, R)dY po(S)
= 4nYexp( — S)dY (5
Integrating from Y = 0 to R, T, 1 (R) is obtained

T;ype 1(R) = J

Y=0

R

4n¥exp[ — S(Y,R)]dY (6)

Tiype 1(R) 1s the normalized number of grain bound-
aries of type 1 in dependence on R. T;,. (R) is cal-
culated from Equations 4 and 6 by numerical integra-
tion. The resuit is shown graphically in Fig. 5.

2.2. Normalized number of grain boundaries
of type 2 in dependence on R

The grain boundary of type 2a is limited to the left side

of the nucleus A by a dynamic triple point and to the

right side of the nucleus A by a static triple point. At

the grain boundary of type 2b this is reversed. It holds

that

Ttype Z(R) = ];ype Za(R) + 7;ype Zb(R)
= 2]’;ype Za(R) (7)

At first we regard type 2a and we start with the
o0 -shaped region. The point C has to be a dynamic
triple point, and therefore we have to find no nucleus
in its circle with the radius of growth R. This probabil-

{c)

(d)

Figure 5 Graph of the normalized numbers of grain boundaries of

types 1, 2 and 3, and the sum of all three types in dependence on R:
(3.) lepe 1= (b) lepe 2 (C) T;ype 3 and (d) 7:0!:11'

ity is given by
AnYdYexp( — nR?)

Fig. 6 shows the area S, which is § minus nR>2
Within S, (¥, R) there must be at least one nucleus in
order to have a static triple point; otherwise this grain
boundary is of type 1, and this may not be. The
probability of finding no nucleus within the area
Stest18 €Xp( — Syest)- Therefore, the probability of find-
ing any number of nuclei other than zero within area
Srest 18 1 —exp( — S,cq). Collectively we have to
multiply the independent probabilities

T;ype Za(Y7 R)dY = 4TCYCXp( — ‘[tRZ)
{1 — €Xp [ - Sresl(Y’ R)]}dY (8)
Integrating from ¥ =0to ¥ =R,

R

Tiype 2a(R) = j 4nYexp( — mR?)dY
[¢]

R
— j AnYexp( — mR?)
Y=0

xexp[ — Srea(Y, R)]dY ©)
Since the areas
nR? + S..«(Y,R) = S(Y,R)
upon integration Equation 9 gives

];ype Za(R) = ZnRZ exp( - TERZ)
R
—j 4nYexp[ — S(Y, R)1dY (10)
Y=0

The integral equals Ti,,. 1 (R) from Equation 6. From
Equation 7 it holds from Equation 10 that

T;ype Z(R) = 47.CR2 exp( - ﬂ:Rz) - 2];ype I(R) (11)

Tiype 2(R) is the mean number of grain boundaries of
type 2 per nucleus. T;,,. »(R) is shown graphically in
Fig. 5.

2.3. Normalized number of grain boundaries
of type 3 in dependence on R

The grain boundaries of type 3 end between C and C’

in Fig. 3, without reaching C and C’. D in Fig. 7 is the

S

circle

Figure 6 S is a circular area around C with radius of growth R.
It holds from Fig. 4 that S, =S — Sciee. Within the region
S;e there is at least one nucleus if the construction is valid for
a grain boundary of type 2a.
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Figure 7 Construction of the areas used for the calculation of grain
boundaries of type 3. All four circles.or arcs hit the nuclei A and B.
The neighbouring nucleus on the right-hand side is arranged in the
differential area element dS within S,.,.

right end-point of the grain boundary, if the circle
around D which goes through A and B has the circle
area of Sy. The probability of finding no nucleus
within Sy is exp ( — Sy). D is also the right end-point if
within the area element dS on the right-hand side of
the circle Sy there is not less than one nucleus. The
probability is [1 — exp( — dS)]. This equals dS be-
cause of the expansion in a power series and rupture
after the second term.

The left end of the grain boundary lies between
C and D. The probability of finding not less than one
nucleus within the region §; in Fig. 7 amounts to
[1 —exp(— §,)]. The three independent probabilities
have to be multiplied

exp( — Sw)[l — exp( — §)]dS (12)

D can occupy any position from C to C'. This means
that the area element dS has to be integrated over S,

T;ype S(R) = f eXp( - SM) [1 - exp( - Sl]dS

Srest
(13)

The result of the numerical integration is shown
graphically in Fig. 5.

As shown in Fig. 5, T}y, 3(R — oo ) = 3. This beha-
viour means that an average of three grain boundaries
belong to one nucleus. The following interpretation is
possible: each polygon around one nucleus has six
sides an average [7]. This is understandable since each
grain boundary has two nuclei, A and B.

2.4. Normalized number of all grain
boundaries in dependence on R

The normalized number of all grain boundaries in

dependence on R, Ti,.1(R), is

Ttotal(R) = T;ype l(R) + -T;ype Z(R) + Ttype 3(R)
(14)

Inserting Ty, 1(R) from Equation 16 (below) and
Tiype 3(R) from Equation 18 (below) into Equation 14

T;olal(R) = %[Udyn(R) - ﬂype Z(R)] + T;ype Z(R)
+ %[3Ustatic(R) - T;ype Z(R)]
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The T,y 2(R) cancels out and we obtain from Equa-
tions 17 and 19 (below) that

Toa(R) = 2mR*exp( — nR?)

+ 3[1 — exp( — nR%)]

— 3nR?exp( — mR?)

3[1 — exp( — nR%)]

— nR?*exp( — mR?)  (15)

i

To1(R) is 2 Veuuch analytical expression and it is
shown graphically in Fig. 5.

3. Normalized numbers of triple

points in dependence on R
In previous work we found the mean numbers by
numerical integration. Here we find the numbers of
triple points by exact integration [8].

3.1. Normalized number of dynamic triple
points in dependence on R

The normalized number of dynamic triple points in

dependence on R equals 2 for grain boundaries of type

1 and equals 1 for grain boundaries of type 2. There-

fore, the normalized number, Ug4y,(R), of dynamic

triple points in dependence on R is

Udyn(R) = 27—;ypel(R) + -T;ype Z(R) (16)

With Equation 11 there is an exact analytical expres-
sion for U gy, (R)
Ugn(R) = 4nR%exp( — for R > 0
(17)

Ugya(R) is shown graphically in Fig. 8. It holds that

J\ Udyn(R)dR = Jv
R=0 R=0

exp( — tR?)dR =1

nR?)

4nR?

3.2. Normalized number of static triple
points in dependence on R

Each static triple point contains three ends of grain
boundaries. Therefore, we have to divide the number
of grain boundaries involved by 3. The grain bound-
aries involved are of the types 2 and 3. The grain
boundaries of type 2 have one and those of type 3 have
two static triple points. Therefore, the normalized
number of static triple points in dependence on R is

Uslatic(R) = %[:lepe Z(R) + 2]1type 3(R):| (18)

Ugaic(R) 1s shown graphically in Fig. 8. Fig. 8 shows
that Ug,;.(R = o0 ) = 2. This result says that in the
completely transformed state there are two static
triple points for each nucleus.

Another deduction given in the Appendix yields an
exact analytical result for U, (R)

Udaie(R) = 2[1 — exp( — nR?) — nR?
exp{ — mR?*)] (19)

Of course, Equations 18 and 19 are identical.



Figure 8 Graph of the normalized numbers of dynamic, static and
all triple points in dependence on R: (a} U gyn, (b) Ugaye and (c) U gar.

3.3. Normalized number of all triple points in
dependence on R

The mean values for the sum of all triple points is

given by Ugi(R)

" Uea(R) = Ugn(R) + Usaic(R) (20)
= 4nR?exp( — nR?)
+ 2[1 — exp( — nR?)
— nR?exp( — mR?)]
=2[1 — exp( — nR?)
+ nR?*exp( — nR?)] 21
U o1 (R) is shown in Fig, 8.

4. Normalized number of growth

fronts in dependence on R
The growth fronts are either circles or arcs all with the
same radius. We find again the normalized numbers of
growth fronts in dependence on R by an exact
deduction.

4.1. Normalized number of circles

in dependence on R
First we deduce the normalized number of circles in
dependence on R. The circles with radius R must not
interfere with another nucleus. Therefore, a circle with
the area m(2R)* must be free of nuclei. This gives for
Poisson-distributed nuclei the relative number
[n(2R)*]°

o exp[ — n(2R)?]

= exp( — 4nR?) (22)

Vcircles(R) =

Viireres(R) 1s shown graphically in Fig. 9.

{c}

(a)

0 L " R [ . L 1
0 1 2
R

Figure 9 Graph of the normalized numbers of circles, arcs and all
growth fronts in dependence on R: (2) Vireress (0) Vares a0d (€) Vigar.

4.2. Normalized number of arcs

in dependence on R
The number of arcs equals the number of dynamic
triple points. This result is unexpected. It is under-
standable if each dynamic triple point is identified by
an arc that is placed to the right of the dynamic triple
point. It holds that

Varcs(R) = Udyn(R) (23)
Viees(R) is shown in Fig. 9.

4.3. Normalized number of all growth

fronts in dependence on R
Since the growth fronts contain circles and arcs, the
normalized number of growth fronts in dependence on
R, Viga1(R), 18 by addition

Vioat(R) = Viircres(R) + Vires(R) (24)
Vieat(R) = exp( — 4nR?) + 4nR*exp( — nR?)
(25)
Vieal(R) 1s shown graphically in Fig. 9.

5. Normalized numbers of all ten
properties in dependence on F

So far we have used R in order to calculate the nor-

malized numbers of the ten properties. Now we use

F in order to calcuilate the normalized numbers of the

ten properties. The transformation, F(R), is given by

Equation 2.
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(d)
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0 05 10
F

Figure 10 Graphical demonstration of the normalized numbers of
grain boundaries of types 1, 2 and 3. and the sum of all three types in
dependence on F: (a) lepe 1> (b) lepe 2s (C) T;ype 3 al’ld (4) 7;cotal-

5.1. Normalized numbers of grain boundaries

of types 1, 2 and 3 in dependence on F
Numerical integration yields Tj,,. ; (R) from Equation
6, Tiype2(R) from Equation 11 and T, 3(R) from
Equation 13. By means of the transformation F(R) we
obtain Tiype 1(F), Tiype 2(F) and Ty, 3(F). These are
shown graphicaily in Fig. 10. The error of the numer-
ical integration is < 3%. and it is within the range of
the thickness of the lines.

5.2. Normalized numbers of the seven
remaining properties in dependence on F
The transformation of Equation 2, F(R), yields

1 ~F
— In(l — F)

exp( — mR?) =
TR? =

We multiply the two left-hand sides and then the two
right-hand sides, obtaining

nR?*exp( — nR?) = — (1 — F)In(l — F)
= g(F)

The expression g(F) frequently appears and is shown
in Fig. 11.

Now we consider the normalized numbers of
Tiow(R) (Equation 15),  Ugy(R) (Equation 17),
Ugaic(R) (Equation 19), U, (R) (Equation 21),
Veireres(R) (Equation 22), V,..(R) (Equation 23) and
Vioal(R) (Equation 25). All of these normalized num-
bers in dependence on R are exact analytical expres-
sions. We transform these normalized numbers, which

(26)
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1.0

(b)
- 3
b
05} —
L
Y
| {o)
V) A—— L
0.0 0.5 1.0
F
Figure 11 Graph of (a) g(F)and (b) (1 — F)* for 0 F < 1.
2 n
{c)
1
s
Y (a)
= -
I
(b)
0 L
0.0 0.5 1.0
F

Figure 12 Graph of the normalized numbers of dynamic, static and
all triple points in dependence on F: () Uy, (b) Usaic and (€) U gpar-

are functions of R, by Equation 2 and obtain the
normalized numbers as functions of F. With g(F) from
Equation 26 we finally obtain the plain expressions

Tow(F) = 3F — g(F) (27)
UgnlF) =+ 4g(F) (28)
Usaie(F) = 2[F — g(F)] (29)
UoalF) = 2[F + g(F)] (30)
Verares(F) = (1 — F)* (31)
Vars(F) =+ 4g(F) (32)
Voa(F) = (I — F)* + 49(F)  (33)

T(F), U(F)and V(F) are shown in Figs 10, 12 and 13,
respectively.



5.3. Example

Given: 10° Poisson-distributed nuclei having arrived

at a degree of growth F = 0.6.

Wanted: The mean numbers of the ten properties.
In a good approximation we obtain the mean num-

bers of the:

grain boundaries of type 1

10° Type 1 (F = 0.6) = 37999
grain boundaries of type 2
10° Type 2(F = 0.6) = 71119
grain boundaries of type 3
10° Tiype 3(F = 0.6) = 34592
F —_—
I (c)
1 -
. J
- -
[
d
|
(b} (a)
0 R Bl N
0.0 0.5 1.0
F

Figure 13 Graph of the normalized numbers of circles, arcs and all
growth fronts in dependence on F: (a) Veles, (b) Vares and () Vigear-

TABLE II N =10%and F = 0.6

Exact mean numbers are obtained for;

all grain boundaries 1037, . (F = 0.6) = 143348
dynamic triple points 10°Ug,,(F = 0.6) = 146607
static triple points  10°U . (F = 0.6) = 46697
all triple points 10°U i (F = 0.6) = 193303
circles 10°V,paes(F = 0.6) = 2560
arcs 10°V,,(F = 0.6) = 146607
all growth fronts 10°Vgm(F = 0.6) = 149167

6. Computer simulation
Again we chose 10° nuclei and F = 0.6. We counted
the numbers of all ten properties in a computer simu-
lation. The computer simulation was repeated three
times in order to even out fluctuations. In the first
column of Table II the properties are listed. In the
second column the values of the example in Sec-
tion 5.3 are listed. In the remaining three columns the
numbers of the properties were counted by computer
simulation.

From Table 11 it can be seen that within the range of
fluctuations the theoretical values are in good agree-
ment with the simulation results.

Appendix: Deduction for static

triple points

Three neighbouring growing spherulites meet in one
point. This point is the static triple point. The distance
to each of the nuclei of the three spherulites is the
same, and we denote this distance by r.

The relative number to find three Poisson-distrib-
uted nuclei in a distance between r and r + g, de-
scribed by the probability ¢g;(AS), and simultaneously
to find no nucleus within the circle with radius r,
described by ¢o(S), amounts to

4(S.A8) = 45(AS)qo(S) (A1)

It holds that S = mr? and AS = 2mre, where ¢ is infi-
nitesimally small. Therefore according to the Poisson
distribution ¢q(S, AS) becomes

(2nre)?
3!

g(r,e) = exp( — 2mre)exp( — mr?)

Property Theory Counted out by computer simulation
2 3

Grain boundaries of type 1 37999 37948 37683 38127
Grain boundaries of type 2 71119 70713 70925 70794
Grain boundaries of type 3 34592 34464 34471 34159
Grain boundaries of all types 143 348 143125 143079 143080
Dynamic triple points 146 607 146 610 146292 147052
Static triple points 46697 46553 46623 46376
All triple points 193303 193163 192920 193428
Circles 2560 2581 2620 2531
Arcs 146 607 146610 146292 147052
All growth fronts 149167 149191 148912 149 583
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Because of the infinitesimal size of &,
exp{ — 2mnre) = 1, and therefore

_ (2ne)®

atie) = 5 (a2

rPexp( — mr?)

In order to eliminate the infinitesimal £ we normalize
the g(r, g)

w© 3 w0
J‘ glr, £)dr Q”E@__J rPexp( — wr?)dr
r=0

I

= r=0
_ G 1
T3t 2R

This yields

q(r, e)/f g(r,e)dr = 2n?riexp( — nr?)
r=0

(A3)
Of course it holds that |2, p(r)dr = 1.

We must integrate p(¥) from r = 0 tor = R in order
to include all static triple points

P(R) = J‘R p(rdr

R
= J nrtexp( — mwr?)2mr dr (A4)
r=0
The substitution X = nr?, which yields dX = 2nrdr,
gives as a result
P(R) =

J‘ER Xexp( — X)dX = — (1 +X)

X=0
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aR2
exp( — X) =

X=0

1 — (1 + 1R exp( — nRY)

(A5)

Because of the normalization P(R) is not the nor-
malized number of static triple points in dependence
on R, We saw in Section 3.2 that in the transformed
microstructure there are two static triple points for
one nucleus. Therefore, Equation AS yields

Usaie(R) = 2P(R) = 2[1 — (1 + nR?)
x exp( — nR?)] (19)
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